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Howson property and inverse semigroups

Definition
An algebra is said to have the Howson property if the intersection
of any two finitely generated subalgebras is again finitely generated.

↭ Howson (1954): the intersection of any two finitely generated
subgroups of a free group is again finitely generated.

Definition
(S , ·) is an inverse semigroup if it is a semigroup such that for
every s → S there is a unique t → S such that sts = s and tst = t;
denote t by s

→1.

Equivalently, (S , ·) is an inverse semigroup if it is regular, i.e. for
every s → S there is t → S such that sts = s, and its idempotents
commute.
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Howson properties for inverse semigroups

↭ Every inverse semigroup is just an ordinary semigroup by
disregarding the inverse operation.

inverse semigroup

inverse
subsemigroups

ordinary
subsemigroups

↭ Inverse semigroup Howson property: if the intersection of any
two finitely generated inverse subsemigroups is finitely
generated.

↭ Semigroup Howson property: if the intersection of any two
finitely generated ordinary (i.e. not necessarily inverse)
subsemigroups is finitely generated.
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Monogenic inverse semigroups

Monogenic inverse semigroup: generated by x and x
→1.

Theorem (Petrich, Theorem IX.3.11)

A monogenic inverse semigroup is isomorphic to one of the
following:

(i) a finite inverse semigroup;

(ii) the monogenic free inverse semigroup;

(iii) the bicyclic monoid B;

(iv) the integers Z;
(v) an inverse semigroup with an ideal isomorphic to B with finite

complement;

(vi) an inverse semigroup with an ideal isomorphic to Z with finite
complement.
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Howson properties for monogenic inverse semigroups

Theorem (Jones and Trotter (1989), Jones (2016))

Every monogenic inverse semigroup has the inverse semigroup
Howson property.

Question: What about semigroup Howson property for monogenic
inverse semigroups?

Theorem (Miller, Ruškuc, C., 25+)

A monogenic inverse semigroup has the semigroup Howson
property if and only if it is not free.
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A monogenic inverse semigroup has the semigroup Howson
property if and only if it is not free.



Non-free monogenic inverse semigroups

↭ Only need to show B and Z has the semigroup Howson
property because:

↭ Let S be a semigroup and let T ↑ S such that S \ T is finite.
Then, S has the semigroup Howson property if and only if T
does.

↭ Nice fact:

Every subsemigroup of N0 is finitely generated (Sit & Siu,
1975).

↫ Z has the semigroup Howson property.
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The bicyclic monoid B

The bicyclic monoid B is defined by Inv↓x | xx→1 = 1↔.
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The bicyclic monoid B

A subsemigroup of B is diagonal if it consists of diagonal elements
only:

1 2 22 x

at 212 2112 25413

x2 5271 2222 21713

53 25311 2322 25313



The bicyclic monoid B

A subsemigroup of B is upper (similarly lower) if it consists of
upper diagonal or diagonal elements only:

1 2 22 x

at 212 2112 25413

x2 5271 2222 21713

53 25311 2322 25313



The bicyclic monoid B

A subsemigroup of B is square if it contains elements both above
and below diagonal:

1 2 22 x

at 212 2112 25413

x2 5271 2222 21713

53 25311 2322 25313



The bicyclic monoid B

Theorem (Descalço and Ruškuc, 2005, 2008)

A subsemigroup S of B is finitely generated if and only if one of
the following holds:

(i) S is a finite diagonal;

(ii) S is square that is a finite union of copies of B and
subsemigroups of N0;

(iii) S is upper (or lower) that is a finite union of subsemigorup sof
N0.

↫ B has the semigroup Howson property.
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The monogenic free inverse semigroup FI

↭ What about the free one, the monogenic free inverse
semigroup FI?

↭ There is an example (in fact many) of non-finitely generated
intersection of two finitely generated subsemigroups of FI.

↭ Every element is uniquely associated with a Munn tree (a
birooted edge-labelled digraph, i.e. automaton).

↭ For us, they are just finite directed paths:
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The monogenic free inverse semigroup FI

↭ A typical Munn tree looks like:

↭ Triple notation:

FI := {(↗a, p, b) → Z3 : a, b ↘ 0, a+ b > 0,↗a ↑ p ↑ b}.

↭ Multiplication:

(↗a1, p1, b1)(↗a2, p2, b2) =

(↗max(a1, a2 ↗ p1), p1 + p2, max(b1, b2 + p1))
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The monogenic free inverse semigroup FI

↭ An element (↗a, p, b) is

positive if p > 0, negative if p < 0,
idempotent if p = 0.

↭ P := {positive elements} N := {negative elements}
E := {idempotent elements}

↭ A subsemigroup S ↑ FI is
↭ one-sided if S ≃ P ⇐ E or S ≃ N⇐E;
↭ two-sided if S ⇒ P ⇑= ⇓ and S ⇒ N ⇑= ⇓.
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When does a non-finitely generated intersection occur?

Let S ,T ↑ FI be finitely generated ordinary subsemigroups. Then,

S or T one-sided
S and T both
two-sided

S ⇒ T one-sided
Always finitely
generated

⇔ example of non-finitely
generated intersection

S ⇒ T two-sided Not applicable
⇔ example of non-finitely
generated intersection
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One-sided subsemigroups

Consider the positives and idempotents PE := P ⇐ E. It can be
further partitioned into

PEa,b := {(↗a, x , x + b) → FI : x ↘ 0} (where a, b → N0)

Proposition (Ruškuc, C. (2025), Miller, Ruškuc, C. (25+))

(i) PEa,b
↖= N0;

(ii) PE =
⊔

a,b↑N0
PEa,b (disjoint union of copies of N0);

(iii) any finitely generated one-sided subsemigroup intersects with
only finitley many PEa,b.

↫ if S ,T ↑ FI are finitely generated subsemigroups and at least
one is one-sided, then S ⇒ T is finitely generated.
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(i) PEa,b
↖= N0;

(ii) PE =
⊔

a,b↑N0
PEa,b (disjoint union of copies of N0);

(iii) any finitely generated one-sided subsemigroup intersects with
only finitley many PEa,b.

↫ if S ,T ↑ FI are finitely generated subsemigroups and at least
one is one-sided, then S ⇒ T is finitely generated.

FEE Feages



Two-sided subsemigroups

↭ Now, let both S ,T be two-sided finitely generated
subsemigroups of FI.

↭ We noted S ⇒ T can either be one-sided or two-sided.

↭ In both cases, there are many examples S ,T whose
intersection is not finitely generated.

↭ But the two cases are quite di!erent:
S ⇒ T one-sided ↙ ‘easy’
S ⇒ T two-sided ↙ ‘complicated’

↭ ‘Easy’ case: how do we find a non-finitely generated one-sided
intersection?

Idea: find two finitely generated subsemigroups whose
intersection intersect with infinitely many PEa,b.
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Non-finitely generated one-sided intersection example

Example.

S := ↓(↗2,↗2, 0), (0, 2, 2)↔, T := ↓(↗2,↗2, 1), (0, 2, 2)↔.
↭ S is in fact an inverse subsemigroup ↖= FI;

↭ Any element in S is of the form (↗2a, 2x , 2b) where
a, x , b → Z, a, b ↘ 0 with a+ b > 0 and ↗a ↑ p ↑ b. In
particular, every component is even.

↭ Any non-positive element of T has the third component in
the triple odd.

↭ So, S ⇒ T ≃ P ≃ PE, i.e. one-sided.

↭ But, {(↗2a, 2, 2) : a → N0} ≃ S ⇒ T

↫ S ⇒ T not finitely generated.

∝ FI does not have the semigroup Howson property.
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Two-sided subsemigroups

↭ What about the complicated case where S ,T ↑ FI two-sided
finitely generated subsemigroups and S ⇒ T two-sided?

↭ First of all, what do finitely generated two-sided
subsemigroups look like? A characterisation possible?
↭ complicated... but I shall explain how to view

non-negative elements inside a finitely generated
subsemigroup of FI.
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Silva’s cut and paste lemma

Lemma (Silva, 2023)

For a finitely generated subsemigroup S of FI there are some

computable n
↓ ↘ n ↘ 1 such that the following three hold for all

(↗a, x , x + b) → PE:

(i) when a ↘ n
↓
: (↗a, x , x + b) → S i! (↗(a↗ n), x , x + b) → S ;

(ii) when x ↘ n
↓
: (↗a, x , x + b) → S i! (↗a, x ↗ n, x ↗ n+ b) → S ;

(iii) when b ↘ n
↓
: (↗a, x , x + b) → S i! (↗a, x , x + b ↗ n) → S .

Note: Silva proved above for rational subsets.
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↓ ↘ n ↘ 1 such that the following three hold for all

(↗a, x , x + b) → PE:

(i) when a ↘ n
↓
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Finitely generated two-sided subsemigroups

Let S ↑ FI be a finitely generated two-sided subsemigroup. Its
elements in PE look like: see the board!

↭ Finitely generated two-sided subsemigroup of FI are precisely
those that have this ‘periodic’ behaviour in PE and in
NE := N⇐E plus two other ‘technical conditions’.

↭ An example of S ,T ↑ FI finitely generated, two-sided and
whose intersection S ⇒ T is non-finitely generated two-sided
can be given by showing that the intersection S ⇒ T fails one
of the technical conditions.
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Finitely generated intersection problem

Given S ,T ↑ FI finitely generated, we saw S ⇒ T is sometimes
finitely generated and sometimes not.

Question (Finitely Generated Intersection Problem for FI)

Given S = ↓X ↔, T = ↓Y ↔ ↑ FI where X ,Y are finite, is it
algorithmically decidable whether S ⇒ T is finitely generated or
not?

Theorem (Miller, Ruškuc, C., 25+)

The answer is YES.
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