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Definition
An algebra is said to have the Howson property if the intersection
of any two finitely generated subalgebras is again finitely generated.

» Howson (1954): the intersection of any two finitely generated
subgroups of a free group is again finitely generated.

Definition
(S, ) is an inverse semigroup if it is a semigroup such that for
every s € S there is a unique t € S such that sts = s and tst = t;

denote t by s 1.

Equivalently, (S, ) is an inverse semigroup if it is regular, i.e. for
every s € S there is t € S such that sts = s, and its idempotents
commute.
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» |nverse semigroup Howson property: if the intersection of any
two finitely generated inverse subsemigroups is finitely
generated.

» Semigroup Howson property: if the intersection of any two
finitely generated ordinary (i.e. not necessarily inverse)
subsemigroups is finitely generated.
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Monogenic inverse semigroup: generated by x and x~ 1.

Theorem (Petrich, Theorem [1X.3.11)

A monogenic inverse semigroup is isomorphic to one of the
following:

(i) a finite inverse semigroup;

(ii) the monogenic free inverse semigroup;
(iii) the bicyclic monoid B;
(iv) the integers Z;

(v) an inverse semigroup with an ideal isomorphic to B with finite
complement;

(vi) an inverse semigroup with an ideal isomorphic to Z with finite
complement.
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Howson properties for monogenic inverse semigroups

Theorem (Jones and Trotter (1989), Jones (2016))

Every monogenic inverse semigroup has the inverse semigroup
Howson property.

Question: What about semigroup Howson property for monogenic
Inverse semigroups’?

Theorem (Miller, Rugkuc, C., 25+)

A monogenic inverse semigroup has the semigroup Howson
property if and only if it is not free.
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» Only need to show B and Z has the semigroup Howson
property because:

» Let S be a semigroup and let T < S such that S\ T is finite.
Then, S has the semigroup Howson property if and only if T
does.

» Nice fact:

Every subsemigroup of Ny is finitely generated (Sit & Siu,
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A subsemigroup of B is square if it contains elements both above

and below diagonal:
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Theorem (Descalco and Ruskuc, 2005, 2008)

A subsemigroup S of B is finitely generated if and only if one of
the following holds:

(i) S is a finite diagonal;

(ii) S is square that is a finite union of copies of B and
subsemigroups of Np;

(iii) S is upper (or lower) that is a finite union of subsemigorup sof
No.

~=2 B has the semigroup Howson property.
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» What about the free one, the monogenic free inverse
semigroup FI7?

» There is an example (in fact many) of non-finitely generated
intersection of two finitely generated subsemigroups of FlI.

» Every element is uniquely associated with a Munn tree (a
birooted edge-labelled digraph, i.e. automaton).

» For us, they are just finite directed paths:
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The monogenic free inverse semigroup Fl

» A typical Munn tree looks like:

P edges
sy,
——— j/’lk’¥ >

a edges Ioeolaes

» Triple notation:
Fl .= {(—a,p,b)€Z>:a,b>0,a+b>0—a<p<b}.

» Multiplication:

—

(—a1, p1, b1)(—a2, p2, b2) =
(—max(a1, a2 — p1), p1 + p2, max(by, b + p1))
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» An element (—a, p, b) is positive if p > 0, negative if p <0,
idempotent if p=0.

» P := {positive elements} N := {negative elements}
E := {idempotent elements}
» A subsemigroup S < Fl is
» one-sidedif SCPUEor S CNUE;
» two-sided if SNP #( and SNN # (.
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Let S, T < Fl be finitely generated ordinary subsemigroups. Then,

S or T one-sided

S and T both
two-sided

SN T one-sided

Always finitely
generated

3 example of non-finitely
generated intersection

SN T two-sided

Not applicable

3 example of non-finitely
generated intersection
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Consider the positives and idempotents PE := P UE. It can be
further partitioned into

PE.» ={(—a,x,x+ b) e Fl: x >0} (where a, b € Np)
L edges DL';O)/,

= - 7 T 3=
a_ edges b edges

Proposition (Rugkuc, C. (2025), Miller, Rudkuc, C. (25+))
(i) Panb = No;
(i) PE =], pen, PEa,» (disjoint union of copies of Np);

(iii) any finitely generated one-sided subsemigroup intersects with
only finitley many PE, p.

~M2 it S, T < Fl are finitely generated subsemigroups and at least
one is one-sided, then SN T is finitely generated.
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Two-sided subsemigroups

» Now, let both S, T be two-sided finitely generated
subsemigroups of FlI.

» We noted S N T can either be one-sided or two-sided.

» In both cases, there are many examples S, T whose
Intersection is not finitely generated.

» But the two cases are quite different:
SN T one-sided < ‘easy’
SN T two-sided <+ ‘complicated’

» ‘Easy’ case: how do we find a non-finitely generated one-sided
intersection?

|dea: find two finitely generated subsemigroups whose
intersection intersect with infinitely many PE, .
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S:=((-2,-2,0), (0,2,2)), T:=((—-2,-2,1),(0,2,2)).
» S is in fact an inverse subsemigroup = Fl;

» Any element in S is of the form (—2a, 2x,2b) where
a,x,beZ,ab>0witha+b>0and —a<p<b. In
particular, every component is even.

» Any non-positive element of T has the third component in
the triple odd.

» So, SNT CP CPE, i.e. one-sided.
» But, {(—23,2,2):a €N} CSNT

~2 SN T not finitely generated.

—> FI does not have the semigroup Howson property.



Two-sided subsemigroups



Two-sided subsemigroups

» \What about the complicated case where S, T < Fl two-sided
finitely generated subsemigroups and S N T two-sided?



Two-sided subsemigroups

» \What about the complicated case where S, T < Fl two-sided
finitely generated subsemigroups and S N T two-sided?

» First of all, what do finitely generated two-sided
subsemigroups look like? A characterisation possible?



Two-sided subsemigroups

» \What about the complicated case where S, T < Fl two-sided
finitely generated subsemigroups and S N T two-sided?

» First of all, what do finitely generated two-sided
subsemigroups look like? A characterisation possible?

» complicated...



Two-sided subsemigroups

» \What about the complicated case where S, T < Fl two-sided
finitely generated subsemigroups and S N T two-sided?

» First of all, what do finitely generated two-sided
subsemigroups look like? A characterisation possible?

» complicated... but | shall explain how to view
non-negative elements inside a finitely generated
subsemigroup of Fl.
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Note: Silva proved above for rational subsets.
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Let S < FI be a finitely generated two-sided subsemigroup. lts
elements in PE look like: see the board!

» Finitely generated two-sided subsemigroup of Fl are precisely
those that have this ‘periodic’ behaviour in PE and in
NE := NUE plus two other ‘technical conditions'.

» An example of S, T < Fl finitely generated, two-sided and
whose intersection S N T is non-finitely generated two-sided
can be given by showing that the intersection S N T fails one
of the technical conditions.
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Finitely generated intersection problem

Given S, T < FI finitely generated, we saw SN T is sometimes
finitely generated and sometimes not.
Question (Finitely Generated Intersection Problem for FI)

Given S = (X), T = (Y) < Fl where X, Y are finite, is it
algorithmically decidable whether S N T is finitely generated or
not?

Theorem (Miller, Ruskuc, C., 25+)
The answer is YES.



Thank you for listening!




